ELC-112 DC/AC Electricity

COURSE DESCRIPTION:

Prerequisites: None Corequisites: None

This course introduces the fundamental concepts of and computations related to DC/AC electricity. Emphasis is placed on DC/AC circuits, components, operation of test equipment; and other related topics. Upon completion, students should be able to construct, verify, troubleshoot, and repair DC/AC circuits. Course Hours Per Week: Class, 3. Lab, 6. Semester Hours Credit, 5.

LEARNING OUTCOMES:

Upon completing requirements for this course, the student will be able to:

- 1. Demonstrate safe practices and procedures with tools, materials, and industry accepted test equipment covered in the course.
- 2. Demonstrate appropriate use of test equipment, evaluate circuit performance and apply appropriate troubleshooting techniques to electrical circuits.
- 3. Construct and analyze series, parallel and combinations circuits using appropriate components.
- 4. Use appropriate laws and formulas to perform circuit calculations.
- 5. Interpret electrical schematics.
- 6. Describe the characteristics of various power sources.
- 7. Understand how to use multimeters to make measurements.

OUTLINE OF INSTRUCTION:

- I. Introduction to electricity
 - A. Scientific notation
 - B. Engineering (metric) notation
- II. Voltage, current, and power
 - A. Atomic theory
 - B. Electric charge
 - C. Electron theory
 - D. Voltage and current
 - E. Ohm's law
 - F. Power
 - G. Voltage and current measurements
- III. Voltage sources
 - A. Cells
 - B. Batteries
 - 1. Primary
 - 2. Secondary
 - 3. Wet
 - 4. Dry
 - C. Other sources of voltage
- IV. Resistance

- A. Resistivity of materials
- B. Temperature relation
- C. Types
- D. Color code
- V. Series circuits
 - A. Voltage drops
 - B. Circuit current
 - C. Circuit power
 - D. Voltage divider
 - E. Ground reference
- VI. Parallel and series-parallel circuits
 - A. Voltage drops
 - B. Circuit current
 - C. Circuit power
 - D. Current divider
- VII. Capacitance
 - A. Properties of capacitors
 - B. Types
 - C. Time constants
 - D. Capacitors in series
 - E. Capacitors in parallel

VIII. Magnetism

- A. Magnetic field
- B. Types of magnetic sources
- C. Electromagnetism
- IX. Inductance
 - A. Properties of inductors
 - B. Types
 - C. Time constants
 - D. Inductors in series
 - E. Inductors in parallel
- X. Alternating current and voltage
 - A. Electromagnetic induction
 - B. The sine wave
 - C. Frequency
 - D. Amplitude
 - E. Transformers
- XI. Alternating current circuits
 - A. Reactive components
 - 1. Inductive reactance
 - 2. Capacitive reactance
 - B. Impedance
 - C. Resonance
 - D. Power
 - 1. Apparent

- 2. Real
- 3. Reactive

REQUIRED TEXTBOOK AND MATERIAL:

The textbook and other instructional material will be determined by the instructor.